PENGGUNAAN SISTEM PENGKODEAN DATA (TUGAS KE 2 SISKOMDAT)

31/03/10

BAB I
PENDAHULUAN

A. Latar Belakang
Karakter – karakter data yang akan dikirim dari satu titik ke titik lain, tidak dapat dikirimkan secara langsung. Sebelum dikirim karakter – karakter data tersebut harus dikodekan terlebih dahulu dengan kode – kode yang dikenal oleh terminal. Tujuan dari sebuah pengkodean adalah menjadikan tiap karakter dalam sebuah informasi digital yaitu ke dalam bentuk biner untuk dapat ditransmisikan.
Sejak ditemukannya radio maka penggunaannya semakin lama semakin banyak dan berbagai macam. Hal ini menimbulkan permasalahan yaitu padatnya jalur komunikasi yang menggunakan radio. Bisa dibayangkan jika pada suatu kota terdapat puluhan stasiun pemancar radio FM dengan bandwidth radio FM yang disediakan antara 88 MHz – 108 MHz. Tentunya ketika knob tunning diputar sedikit maka sudah ditemukan stasiun radio FM yang lain. Ini belum untuk yang lain seperti untuk para penggemar radio kontrol yang juga menggunakan jalur radio. Bahkan untuk pengontrollan pintu garasi juga menggunakan jalur radio. Jika kondisi ini tidak ada peraturannya maka akan terjadi tumpang tindih pada jalur radio tersebut.
Alternatifnya yaitu dengan menggunakan cahaya sebagai media komunikasinya. Cahaya dimodulasi oleh sebuah sinyal carrier seperti halnya sinyal radio dapat membawa pesan data maupun perintah yang banyaknya hampir tidak terbatas dan sampai saat ini belum ada aturan yang membatasi penggunaan cahaya ini sebagai media komunikasi. Sistem sandi yang umum dipakai :
1. ASCII (American Standard Code for Information Interchange)
2. Sandi Baudot Code (CCITT Alfabet No. 2 / Telex Code)
3. Sandi 4 atau 8
4. BCD (Binary Coded Decimal)
5. EBCDIC (Extended Binary Coded Decimal Interchange Code)
Metoda Pengkodean Ada Dua Sistem :
1. Binary coding (Pengkodean Biner)
Dua ukuran bar dan space digunakan untuk meng-encode-kan data. Bar dan spasi dapat diubah ke dalam kode biner dengan mudah, yang kemudian diubah (menggunakan sebuah tabel) ke dalam karakter ASCII.
2. Proportional coding
Ada beberapa ukuran yang berbeda pada bar dan space. Ukuran pada bar / space dan urutan dari bar dan space mendefinisikan karakter yang dipresentasikan. Kode tersebut lebih sulit dibaca (kemungkinan tidak mudah mentranslasikannya ke biner) dan diperlukan ketelitian yang lebih dalam mencetak dan men-scanning barcode.
Pada umumnya ada 4 ukuran yang berbeda pada bar dan spasi yang digunakan untuk meng-encode-kan data. Contoh jenis barcode yang menggunakan teknik encoding ini adalah USS Code 128.

B. Rumusan Masalah
Bagaimana penggunaan sistem pengkodean data?

C. Tujuan Penulisan Makalah
Penulisan makalah ini bertujuan untuk mengetahui penggunaan sistem pengkodean data.

BAB II
PEMBAHASAN

A. Spektrum Cahaya dan Respon Mata Manusia
Pada dasarnya penggunaan modulasi cahaya penggunaannya tidak ada batasnya namun modulasinya harus menggunakan sinyal carrier yang frekuensinya harus sangat tinggi yaitu dalam orde ribuan megahertz. Biasanya modulasi dengan frekuensi carrier yang tinggi ini digunakan untuk madulasi sinar laser atau pada transmisi data yang menggunakan media fiberoptic sebagai media perantaranya. Untuk transmisi data yang menggunakan media udara sebagai media perantara biasanya menggunakan frekuensi carrier yang jau lebih rendah yaitu sekitar 30KHz sampai dengan 40KHz. Infra merah yang dipancarkan melalui udara ini paling efektif jika menggunakan sinyal carrier yang mempunyai frekuensi di atas.
Pada transmisi infra merah terdapat dua terminologi yang sangat penting yaitu : ‘space’ yang menyatakan tidak ada sinyal carrier dan ‘pulse’ yang menyatakan ada sinyal carrier.
B. Pulse-Space Terminologi
Pengkodean pada remote infra merah pada dasarnya ada tiga macam dan semuanya berdasarkan pada panjang jarak antar pulsa atau pergeseran urutan pulsa.
Pulse-Width Coded Signal. Pada pengkodean ini panjang pulsa merupakan kode informasinya. Jika panjang pulsa ‘pendek’ (kira-kira 550us) maka dikatakan sebagai logika ‘L’ tetapi jika panjang pulsa ‘panjang’ (kira-kira 2200us) maka menyatakan logika ‘H’.
C. Pulse Width Coded Signals
Space-Coded Signals. Pada pengkodean ini didasarkan pada panjang/pendek space. Jika panjang pulsa sekitar 550us atau kurang maka dinyatakan sebagai logika ‘L’ sedangkan jika panjang space lebih dari 1650us maka dinyatakan sebagai logika ‘H’.
D. Space Width Coded Signal
Shift Coded Signal. Pengkodean ini ditentukan pada urutan pulsa dan space. Pada saat ‘space’ pendek, kurang dari 550us dan ‘pulse’ panjang, lebih dari 1100us maka dinyatakan sebagai logika ‘H’. Tetapi sebaliknya jika ‘space’ panjang dan ‘pulse’ pendek maka dinyatakan sebagai logika ‘L’.
E. Shift Coded Signal
Pengkodean ini merupakan hal yang sangat penting karena tanpa mengetahui sistem pengkodean pada sisi transmitter infra merah maka disisi receiver tidak bisa mendekodekan data/perintah apa yang dikirmkan. Selain itu didalam pengkodean ini perlu disisipkan suatu data yang dinamakan sebagai ‘device address’ sebelum data atau perintah. Device addres ini menyatakan nomor alamat peralatan jika terdapat lebih dari satu alat yang dapat dikendalikan oleh sebuah remote kontrol pada suatu area tertentu.
F. Konverter Sinyal Suara Menjadi Frekuensi
Untuk transmisi sinyal suara biasanya digunakan rangkaian voltage to frequency converter yang berfungsi untuk merubah tegangan sinyal suara menjadi frekuensi. Dan jika sinyal ini dimodulasikan sengan sinyal carrier maka akan menghasilkan suatu modulasi FM. Modulasi jenis ini lebih disukai karena paling kebal terhadap perubahan amplitudo sinyal apabila sinyal mengalami gangguan di udara.
Untuk transmisi data biasanya sinyal ditransmisikan dalam bentuk pulsa-pulsa seperti telah dijelaskan di atas. Ketika sebuah tombol ditekan pada remote kontrol unti maka IR akan mentransmitkan sebuah sinyal yang akan dideteksi sebagai urutan data biner.

BAB III
PENUTUP

Untuk aplikasi jarak jauh maka perlu adanya pengumpulan sinar termodulasi yang lemah. Hal ini bisa dilakukan dengan menggunakan photodioda yang sudah mempunyai semacam lensa cembung yang akan mengumpulkan sinar termodulasi tersebut. Biasanya menggunakan lensa tambahan yang dinamakan dengan lensa FRESNEL yang terbuat dari bahan plastik dan kemudian diumpankan ke photodioda dengan jarak tertentu pada fokus lensa FRESNEL ini.
Untuk aplikasi remote ontrol biasanya cukup menggunakan lensa yang dimiliki oleh photodioda/phototransistor dengan penguatan tertentu. Untuk penggunaan yang harus dapat menerima pancaran sinyal infra merah yang sudut datangnya besar maka harus menggunakan dua atau lebih photodioda. Photodioda yang baik adalah photodioda yang mampu mengumpulkan sinar termodulasi tepat pada wafer silikonnya dan hal inilah yang mempengaruhi kualitas photodioda/phototransistor yang dibeli di pasaran.
Pada saat photodioda mendeteksi adanya sinar infra merah maka akan terdapat arus bocor sebesar 0.5 uA dan ini juga tergantung pada kekuatan sinar infra merah yang datang dan sudut datangnya.
Kekuatan sinar dan sudut datang merupakan faktor penting dalam keberhasilan transmisi data melalui infra merah selain filter dan penguatan pada bagian receivernya.

1 komentar:

Anonim,  20 Maret 2011 pukul 10.48  

punya tabel sandi 4 atau 8 gak boss??

Posting Komentar

  © Blogger template The Beach by Ourblogtemplates.com 2009

Back to TOP